Yoseph, Copertino (2025) Analisis Sentimen Masyarakat Tentang Wisata Embung Banyu Langit Pada Media Sosial Menggunakan Metode Lexicon Based. S1 Sistem Informasi thesis, STMIK Widya Cipta Dharma.
![]() |
Text
2041067-S1-SISTEM INFORMASI.pdf Restricted to Repository staff only Download (1MB) | Request a copy |
![]() |
Text
2041067-S1-JURNAL.pdf Download (323kB) |
Abstract
Yoseph Copertino Asrino Ria, 2024, Analisis Sentimen Masyarakat Tentang Wisata Embung Banyu Langit Pada Media Sosial Menggunakan Metode Lexicon Based. Skripsi jurusan Sistem Informasi, Sekolah Tinggi Manajemen Informatika dan Komputer Widya Cipta Dharma, Pembimbing Utama Pitrasacha Adytia, S.T., M.T, Pembimbing Pendamping Wahyuni, S. Kom., M. Kom. Kata kunci: Analisis Sentimen, Tempat Wisata, Media Sosial, Lexicon Based Penelitian ini bertujuan untuk menganalisis sentimen masyarakat Tentang Wisata Embung Banyu Langit Pada Media Sosial Menggunakan Metode Lexicon Based. Media sosial kini menjadi platform penting untuk mengamati reaksi masyarakat terhadap berbagai isu, termasuk Destinasi Wisata. Dalam penelitian ini, data komentar pada media sosial dikumpulkan dan dianalisis untuk mengidentifikasi sentimen positif, negatif, dan netral. Proses analisis meliputi pengumpulan data, pre-processing, Pelabelan Menggunakan Lexicon Based, Perhitungan Manual, dan Visualisasi. Hasil penelitian, yang dilakukan di Embung Banyu Langit, menunjukkan bahwa Metode Lexicon Based sangat cocok digunakan untuk melihat hasil sentimen yang dibuktikan dengan hasil sentimen yang diperoleh yaitu 32 sentimen negatif, 44 sentimen positif dan 98 sentimen netral. Penelitian ini diharapkan dapat memberikan kontribusi dalam pengembangan Metode analisis sentimen yang lebih canggih dan efektif serta menjadi landasan bagi penelitian lebih lanjut dalam memahami dinamika opini publik dalam konteks politik modern yang semakin kompleks ============================================================ Yoseph Copertino Asrino Ria, 2024, Analysis of Public Sentiment About Embung Banyu Langit Tourism on Social Media Using the Lexicon Based Method. Thesis majoring in Information Systems, Widya Cipta Dharma College of Information and Computer Management, Main Supervisor Pitrasacha Adytia, S.T., M.T, Co-Supervisor Wahyuni, S. Kom., M. Kom. Keywords: Sentiment Analysis, Tourist Attractions, Social Media, Lexicon Based This research aims to analyze public sentiment regarding Embung Banyu Langit tourism on social media using the Lexicon Based Method. Social media has now become an important platform for observing people's reactions to various issues, including tourist destinations. In this research, comment data on social media was collected and analyzed to identify positive, negative and neutral sentiments. The analysis process includes data collection, pre-processing, labeling using Lexicon Based, manual calculations, and visualization. The results of the research, which was carried out at Embung Banyu Langit, showed that the Lexicon Based Method was very suitable for viewing sentiment results as evidenced by the sentiment results obtained, namely 32 negative sentiments, 44 positive sentiments and 98 neutral sentiments. It is hoped that this research can contribute to the development of more sophisticated and effective sentiment analysis methods and become a basis for further research in understanding the dynamics of public opinion in the increasingly complex context of modern politics
Item Type: | Thesis (S1 Sistem Informasi) |
---|---|
Additional Information: | Pembimbing 1 : Pitrasacha Adytia, S. T., M. T Pembimbing 2 : Wahyuni, S. Kom., M. Kom |
Uncontrolled Keywords: | Analisis Sentimen, Tempat Wisata, Media Sosial, Lexicon Based, Sentiment Analysis, Tourist Attractions, Social Media, Lexicon Based |
Subjects: | Q Science > QA Mathematics > QA76 Computer software |
Divisions: | Sistem Informasi |
Depositing User: | Yoseph Copertino RIA |
Date Deposited: | 14 Feb 2025 00:29 |
Last Modified: | 14 Feb 2025 00:29 |
URI: | http://repository.wicida.ac.id/id/eprint/6123 |
Actions (login required)
![]() |
View Item |