Saputra, Muhammad Rieky (2023) Analisis Sentimen dan Klasifikasi Respon Pengguna Media Sosial Instagram Terhadap E-Commerce Shopee di Indonesia. S1 Sistem Informasi thesis, STMIK Widya Cipta Dharma.
Text
1741073-S1-Sistem Informasi.pdf Restricted to Repository staff only Download (5MB) | Request a copy |
||
|
Text
1741073-S1-Jurnal.pdf Download (911kB) | Preview |
Abstract
Media sosial pada saat ini merupakan media komunikasi yang sangat populer dikalangan masyarakat indonesia. Salah satu media sosial yang sedang digandrungi masyarakat saat ini adalah Instagram. Dengan media sosial instagram, informasi masyarakat sangat beragam, dari informasi tersebut terdapat data yang dapat diolah menjadi analisa sentimen. Data yang digunakan berupa respon pengguna media sosial instagram terhadap e-commerce shopee sejumlah 801. Hasil analisis menggunakan naive bayes menghasilkan akurasi terendahnya 73.86% pada rasio 2:8, sedangkan akurasi tertingginya 82.93% pada tingkat rasio 9:1 yang dihasilkan berupa komentar positif. ============================================================ Social media is currently a communication medium that is very popular among Indonesian people. Wrong One social media that is being loved by the public today is Instagram. With social media instagram, Public information is very diverse, from this information there is data that can be processed into sentiment analysis. The data used is the response of Instagram social media users to the e-commerce shope of 801. Results analysis using naive bayes produces the lowest accuracy of 73.86% at a ratio of 2:8, while the accuracy the highest 82.93% at the 9:1 ratio level resulted in positive comments.
Item Type: | Thesis (S1 Sistem Informasi) |
---|---|
Additional Information: | Pembimbing 1 : Kusno Harianto, S.Kom., M.Kom Pembimbing 2 : Drs. Azahari, M.Kom |
Uncontrolled Keywords: | Analisis sentimen, Instagram, Naive Bayes |
Subjects: | Q Science > QA Mathematics > QA76 Computer software |
Divisions: | Sistem Informasi |
Depositing User: | Mr Muhammad Rieky Saputra |
Date Deposited: | 14 Feb 2023 04:56 |
Last Modified: | 09 Jan 2025 05:12 |
URI: | http://repository.wicida.ac.id/id/eprint/4713 |
Actions (login required)
View Item |